If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+40v+50=0
a = 5; b = 40; c = +50;
Δ = b2-4ac
Δ = 402-4·5·50
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{6}}{2*5}=\frac{-40-10\sqrt{6}}{10} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{6}}{2*5}=\frac{-40+10\sqrt{6}}{10} $
| 4=6-2z | | -5(3x-4)=-29-8x | | 21-2d7=6 | | -6(u+4)=-8u-42 | | 0.3(2x-4)=+1.2 | | 10d+d+-7=-20 | | V^2+8v+10=0 | | 4+5(3x-6)=19 | | q/3-16=19 | | x-3+9=11 | | 2(r+8)+5r=-5 | | 2u-32=9(u-9) | | 16.1x^2+20x+300=0 | | 7n+6-4n=-9 | | u+7=30 | | x+.86x=500 | | 2(-3x+2=-38) | | 5x-2=18;4 | | 3+3z=-9+3z | | 15m+5m-4=16 | | 91+43+x=180 | | 3n-3=4n=1 | | 2,8+2,8+x+x=21 | | 8x+3.5=4(3x+1.5)+5x | | 12=k/4+11 | | 2y=0.5+6 | | 99+26+x=180 | | 8+x=13=2x | | 8(1)=-4y=-12 | | 4x-60=x-10 | | X-3(4x+54)=3x-7 | | 16-3p=2/5p+5 |